Parameter-efficient Fine-tuning (or “PEFT”)

Parameter-efficient Fine-tuning (PEFT) is a technique that focuses on optimizing and adapting a pre-trained model’s parameters to new tasks with minimal additional training data. It tries to improve model performance while minimizing the need for lengthy retraining and lowering the risk of overfitting.

SHARE

Related Links

Businesses are embracing the scalability and flexibility offered by cloud solutions. However, cloud migration often poses…

Streamlit is an open-source Python library designed to effortlessly create interactive web applications for data science…

Scroll to Top